报 告 人:林尤舜 新葡的京集团35222vip植物科学系 长聘教轨副教授 博士生导师 独立PI
时 间:2023年6月7日 (星期三) 12:40-14:00
地 点:新葡的京集团35222vip创新楼(B楼)104会议室
主办单位:新葡的京集团35222vip学科与科技办、新葡的京集团35222vip青年教师联谊会
报告题目:细胞器调控植物抗逆的分子机制
报告摘要:
随着全球气候变暖,环境恶化,高温天气频发,将导致作物产量严重受损,其中小麦减产6.0%,水稻减产3.2%,玉米减产7.4%,大豆减产3.1%,将无法满足日益增长的人口需求,引发粮食安全问题,对未来农业可持续发展带来巨大挑战。因此,挖掘高温抗性基因资源、阐明高温抗性分子机制以及培育抗高温作物新品种具有非常重要的意义。课题组研究成果首次揭示了在一个控制水稻数量性状的基因位点(TT3)中存在由两个拮抗的基因(TT3.1和TT3.2)组成的遗传模块,通过在高温胁迫下及时降解叶绿体前体蛋白TT3.2,从而维持叶绿体稳态,赋予水稻高温抗性的新机制。同时发现了第一个潜在的作物高温感受器。此外,自噬在抗逆中也扮演着非常重要的角色,本次报告也将介绍一个小G蛋白信号介导的自噬体形成分子机制。
报告人简介:
【PI学科组研究方向】:
本课题组以粮食作物水稻以及园艺作物番茄等作为材料开展研究,结合细胞生物学(超分辨显微技术,电子显微技术等)、分子生物学、遗传学和生物信息学等多种方法从亚细胞及分子微观角度出发,探索植物细胞器响应逆境的信号通路, 解析细胞器与作物抗逆胁迫的关系,从而提高作物在逆境中的产量,为作物抗逆改良以及未来农业可持续发展提供重要理论基础。
【代表性著作】:
1. Hai Zhang; Ji-Fu Zhou; Yi Kan; Jun-Xiang Shan; Wang-Wei Ye; Nai-Qian Dong; Tao Guo; You-Huang Xiang; Yi-Bing Yang; Ya-Chao Li; Huai-Yu Zhao; Hong-Xiao Yu; Zi-Qi Lu; Shuang-Qin Guo; Jie-Jie Lei; Ben Liao; Xiao-Rui Mu; Ying-Jie Cao; Jia-Jun Yu; Youshun Lin*; Hong-Xuan Lin*. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance; Science. 376(6599) (2022): 1293-1300. (* co-corresponding author)(ESI热点论文,高被引论文).
2. Youshun Lin*, Yonglun Zeng, Ying Zhu, Jinbo Shen, Hao Ye, Liwen Jiang*. Plant Rho GTPase signaling promotes autophagy; Molecular Plant. 14(6) (2021), 905-920. (* co-corresponding author)
ACADEMIC SALON (XXXVII)
SPEAKER: Youshun Lin
Tenure-track Associate Professor, Ph.D. Supervisor, PI
Department of Plant Science, SAB
TIME:12:40-14:00 June 7th, 2023 (Wed)
VENUE:Room 104, Building B, SAB
ORGANIZER:Office of Discipline and Science & Technology, SAB;
Young Teachers Association, SAB
TITLE: Plant organelles in the regulation of stress tolerance
ABSTRACT:
With global warming, climate change, and frequent high temperatures, it will lead to severe yield lossof crop plants, including 6.0% reduction in wheat, 3.2% reduction in rice, 7.4% reduction in maize, and 3.1% reduction in soybean, which will not be able to meet the needs of the growing population and cause food insecurity, posing a great challenge to the sustainable agriculture in the future. Therefore, it is important to explore new genes involved in heat stress tolerance, to elucidate the molecular mechanism of high temperature resilience, and to breed highly tolerant new crop varieties. Our collaborative research results firstly identified aquantitative trait locus TT3 consisting of two genes TT3.1 and TT3.2 to form a genetic module conferring rice thermotolerance. In responce to heat stress, TT3.1 rapidly internalized into endosomal compartments to recruitand ubiquitinate chloroplast precursor protein TT3.2, thereby preventing TT3.2 from being accumulated in the chloroplast and thus maintaining chloroplast homeostasis. We also firstly uncovered that TT3.1 as a potential thermosensor of crop plants. In addition, autophagy also plays an important role in stress resilience, and this presentation will also introduce a molecular mechanism of autophagosome formation mediated by small G protein signalling.